

PROBLEM IDENTIFICATION

- Severe, recurring, peak hour congestion along the corridor
 - > #3 bottleneck

2014 Rank	Location	Road	Direction
1	I-495 IL @ I-270 Spur	1-495	Inner Loop
2	I-95 OL @ Greenbelt Metro Dr/Exit 24**	I-95	Outer Loop
3	I-95 N @ MD-100/Exit 43	l-95	Northbound

- Above average crash patterns at interchanges
 - Crash density pattern

- Inconsistent travel times unreliability
 - High Planning Time Index (PTI).

CONCEPT DEVELOPMENT

- Collected recommendations from previous studies. (7; '03-'15)
- Evaluated 17 concepts, which came from:
 - Previous studies; and
 - New concepts identified based on traffic & crash data.
 - Included both traditional geometric and ATM concepts.
- Pared down to 4 concepts on ability to meet:
 - Cost constraints;
 - > Comparative operational efficiency; and
 - Corridor needs.

BASELINE

CONCEPT 2

CONCEPT 5 A -> 1 -> 175 Hard Running Shoulder Legend

Restricted to PM Peak Period

DESIGN CONSIDERATIONS

- Lane operations
 - Truck Use
- Inside versus Outside
 - Safety
 - Operations
 - > Environmental
- Design exceptions
 - CMF Comparison

ITS STRATEGIES

- Visited VA's I-66 Operations Facility.
- Considering:
 - Current state
 - Level of improvement
 - User expectancy
- Working with internal stakeholders.
- Continuing organization effort.

FUTURE CONSIDERATIONS

Operations

- Hours of operation
- State laws w.r.t. CHART
- Expanded mission
- Maintenance

Environmental

- Noise impacts
- SWM

Design

- Colored pavement
- Signs
- Driver behavior
- Emergency pull-offs
- Life Cycle costs
- Long Term plans

Thank you!

Questions / Comments ?

CONCEPT OVERVIEW

Concept	Total Cost	Crash Rate	Travel Time	BCA
2	\$17 M	-30%	-69%	24.2
3b	\$26 M	-22%	-59%	19.5
5	\$38 M	-34%*	-51%*	14.6

- Each concept includes the baseline concept.
- Concepts will be grouped for deployment.
- Utilized SHRP 2 methodology for BCA

*Concept 5 improvements are for the MD 32 to MD 100 segment. Concept 2 & 3b apply to MD 175 to MD 100.

CONCEPT COMPONENTS (SB I-95)

- 5 Lane Control + DMS sign gantries PTZ CCTV Coverage of system
- Replace all guide signing
 - Change to Choice-Lane
 - Remove Services signs

- ATM Software
- ITS Costs: \$2-3M
- Traffic Costs: \$0.5M

CONCEPT COMPONENTS (NB I-95)

CONCEPT 3B

- 2 Lane Control + DMS sign gantries PTZ CCTV Coverage of system
- Relocate guide signing for MUTCD ATM Software
 spacing ITS Costs: \$2-3M
 - 115 Costs. \$2 5111
 - Traffic Costs: \$0.25M

CONCEPT COMPONENTS (NB I-95; MD 32 to MD 100)

CONCEPT 5

- 6 Lane Control + DMS sign gantries PTZ CCTV Coverage of system
- Relocate guide signing for MUTCD ATM Software spacing
 ITS Costs: \$4-5M
 - Traffic Costs: \$0.5M

Crash Data (1 of 4)

Crash Data (2 of 4)

Crash Data (3 of 4)

Top 3 Locations (% over statewide avg)

- 1. MD 175 (24%)
- 2. MD 100 (8%)
- 3. MD 32 (4%)

Top 3 Crash Types (% of total)

- 1. Rear Ends (48%)
- 2. Sideswipe (18%)
- 3. Fixed Object (16%)

Crash Data (4 of 4)

Top 3 Locations for rear ends

- 1. MD 175 (106 crashes)
- 2. MD 32 (79)
- 3. MD 198 (62)

Top 3 Locations for sideswipes

- 1. MD 198 (37 crashes)
- 2. MD 100 (29)
- 3. MD 32 (28)

Top 3 Locations for fixed objects

- 1. I-895 (23 crashes)
- 2. MD 100 (20)
- 3. MD 32 (19)

818 (41%) of crashes occurred during peak periods